The Structure of Non-zero-sum Stochastic Games
نویسنده
چکیده
Strategies in a stochastic game are δ > 0 perfect if the induced one-stage games have certain δ equilibrium properties. Sufficient conditions are proven for the existence of δ perfect strategies for all δ > 0 implying the existence of equilibria for every > 0. Using this approach we prove the existence of equilibria for every > 0 for a special class of quitting games. The important technique of the proof belongs to algebraic topology and reveals that more general proofs for the existence of equilibria in stochastic games must involve the topological structure of how the equilibria of one-stage games are related to changes in the payoffs.
منابع مشابه
A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملA Study of Gradient Descent Schemes for General-Sum Stochastic Games
Zero-sum stochastic games are easy to solve as they can be cast as simple Markov decision processes. This is however not the case with general-sum stochastic games. A fairly general optimization problem formulation is available for general-sum stochastic games by Filar and Vrieze [2004]. However, the optimization problem there has a non-linear objective and non-linear constraints with special s...
متن کاملForward-backward SDE games and stochastic control under model uncertainty
We study optimal stochastic control problems under model uncertainty. We rewrite such problems as (zero-sum) stochastic differential games of forward-backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the non-zero sum games (finding conditions for Nash equilibria). We...
متن کاملComputing Uniformly Optimal Strategies in Two-Player Stochastic Games
We provide a computable algorithm to calculate uniform ε-optimal strategies in two-player zero-sum stochastic games. Our approach can be used to construct algorithms that calculate uniform ε-equilibria and uniform correlated ε-equilibria in various classes of multi-player non-zero-sum stochastic games. JEL codes: C63, C73.
متن کاملFinite-step Algorithms for Single-controller and Perfect Information Stochastic Games
After a brief survey of iterative algorithms for general stochastic games, we concentrate on finite-step algorithms for two special classes of stochastic games. They are Single-Controller Stochastic Games and Perfect Information Stochastic Games. In the case of single-controller games, the transition probabilities depend on the actions of the same player in all states. In perfect information st...
متن کاملDefinable Zero-Sum Stochastic Games
Definable zero-sum stochastic games involve a finite number of states and action sets, reward and transition functions that are definable in an o-minimal structure. Prominent examples of such games are finite, semi-algebraic or globally subanalytic stochastic games. We prove that the Shapley operator of any definable stochastic game with separable transition and reward functions is definable in...
متن کامل